Suites numériques - EXERCICES

Exercice 1

- a) Soit (u_n) la suite définie par $\begin{cases} u_{n+1} = -2u_n + 3 \text{ pour tout } n \in \mathbb{N} \\ u_0 = 2 \end{cases}$. Calculer u_1, u_2 et u_3 b) Soit (v_n) la suite définie par $\begin{cases} v_{n+1} = 2v_n + n + 3 \text{ pour tout } n \in \mathbb{N} \\ v_0 = 1 \end{cases}$. Calculer v_1, v_2 et v_3 c) Soit (w_n) la suite définie par $\begin{cases} w_{n+2} = w_{n+1} + w_n \text{ pour tout } n \in \mathbb{N} \\ w_0 = 0 \text{ et } w_1 = 1 \end{cases}$. Calculer w_1, w_2 et w_3

Exercice 2

- a) Soit (u_n) la suite définie, pour tout $n \in \mathbb{N}$, par $u_n = \frac{n+3}{2n+1}$
 - a. Calculer u_0 , u_1 , u_2 et u_{50} .
 - b. Montrer que, pour tout $n \in \mathbb{N}$, $u_{n+1} u_n = \frac{-5}{(2n+1)(2n+3)}$
 - c. En déduire le sens de variation de (u_n) .
- b) Etudier le sens de variation de la suite (v_n) définie sur \mathbb{N} par $v_n = n^2 + 3n 2$.
- Etudier le sens de variation de la suite (w_n) définie sur \mathbb{N} par $\begin{cases} w_{n+1} = w_n + e^{-n} + 1 \\ w_0 = -2 \end{cases}$
- d) Etudier le sens de variation de la suite (t_n) définie sur \mathbb{N} par $t_n = 4 \times 2^n 5$.

Exercice 3

- a) Soit (u_n) la suite définie, pour tout $n \in \mathbb{N}$, par $u_n =$ 3n+1. Démontrer que (u_n) est minorée.
- b) Soit (v_n) la suite définie, pour tout $n \in \mathbb{N}^*$, par $v_n =$ $1 + \frac{1}{n}$. (v_n) est-elle majorée par 1 ? Par 2 ?
- c) Soit (w_n) la suite définie, pour tout $n \in \mathbb{N}$, par $w_n =$ $7 + \sin(n)$. Démontrer que (w_n) est bornée.
- d) Soit (t_n) la suite définie, pour tout $n \in \mathbb{N}$, par $t_n =$ $n^2 - 2n + 3$. Démontrer que (u_n) est minorée par 2.

Soit la suite (u_n) définie pour tout entier naturel n par $u_n = 2 + \frac{1}{1+n}$

- 1) Démontrer, en cherchant le signe de $u_{n+1} u_n$, que (u_n) est décroissante.
- 2) En déduire que (u_n) est majorée.

Exercice 7

Soit la suite (u_n) définie pour tout $n \in \mathbb{N}^*$ par : $u_n = 2 + \frac{1}{n^2}$

- 1) A partir de quel rang a-t-on $u_n \in]1,99;2,01[?]$
- 2) En utilisant la définition, montrer que $\lim_{n \to \infty} u_n = 2$.

Exercice 9

Soit la suite (u_n) définie pour tout entier naturel n par $u_n = 2 - 5n$.

- 1) A partir de quel rang a-t-on $u_n < -1000$?
- 2) En utilisant la définition, montrer que $\lim_{n\to+\infty}u_n=-\infty.$

- **87** Soit la suite (u_n) définie par $u_0 = 0$ et pour tout entier naturel *n* supérieur ou égal à 1 : $u_n = u_{n-1} + \frac{n}{2^n}$
- **1.** Montrer par récurrence que pour tout entier naturel nsupérieur ou égal à 1, $u_n = 2 - \frac{n+2}{2^n}$.
- **2.** En déduire que la suite (u_n) est majorée.
- **3.** Montrer par récurrence que pour tout entier naturel nsupérieur ou égal à 2, $n + 2 \le 2^n$.
- **4.** La suite (u_n) est-elle minorée ?

Soit la suite (u_n) définie pour tout entier naturel n par

- 1) Démontrer, par récurrence, que (u_n) est croissante.
- 2) En déduire que (u_n) est minorée.

Exercice 8

Soit la suite (u_n) définie pour tout entier naturel n par $u_n = 3n - 5.$

- 1) A partir de quel rang a-t-on $u_n > 1000$? $u_n > 10^6$?
- 2) En utilisant la définition, montrer que $\lim_{n\to\infty}u_n=+\infty$.

Exercice 10

Compléter un algorithme

Soit (u_n) la suite définie par $u_0 = 1$ et par la relation $u_{n+1} = \frac{1}{3}u_n + n - 2$ pour tout entier naturel n.

1. Compléter l'algorithme ci-contre pour que la variable n contienne, en fin d'algorithme, le plus petit entier naturel n tel que u_n est strictement supérieur à A.

$$u \leftarrow 1$$

 $n \leftarrow \dots$
Tant que ...
 $u \leftarrow \dots$
 $n \leftarrow \dots$
Fin Tant que

Exercice 11

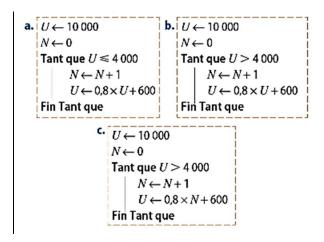
Comprendre un algorithme

Le propriétaire d'une parcelle boisée comptant 10 000 arbres en 2020 gère son exploitation en suivant le modèle suivant : pour tout entier naturel n, u_n est le nombre d'arbres en 2020 + n et $u_{n+1} = 0.8 \times u_n + 600$.

On admet que la suite (u_n) est décroissante.

Il souhaite conserver au moins 4 000 arbres sur sa parcelle.

Parmi les algorithmes suivants, un seul est tel qu'après exécution, la variable *N* contient le nombre d'années nécessaires pour que le nombre d'arbres devienne inférieur ou égal à 4 000. Indiquer lequel en justifiant.



Exercice 12

Dans chaque cas, déterminer la limite de la suite (u_n) définie pour tout entier naturel n non nul.

1) $u_n = 3n^2 + 5n - 11$	$2) u_n = -n^3 - 3n + \frac{1}{n^2}$	3) $u_n = (2 - 3n)(n^2 + 5)$
4) $u_n = \frac{5}{5+3n}$	$5) u_n = 5n^2 + \frac{4}{n^4} - 7$	6) $u_n = n^5 + \frac{\sqrt{n}}{8} + \frac{1}{n}$
7) $u_n = (2n^2 - 5)(-3n^2 - 8)$	8) $u_n = \frac{1}{n} \times \frac{4}{4-5n}$	9) $u_n = -n^{-3} - n$

Exercice 13

Dans chaque cas, déterminer la limite de la suite (u_n) définie pour tout entier naturel n non nul.

1) $u_n = n^2 - 5n$	$2) u_n = -n^2 + 6n + 7$	3) $u_n = n^3 - 3n^2 + 2n - 5$
4) $u_n = \frac{3n+5}{n^2-4}$ pour $n > 2$	5) $u_n = \frac{-2n^2 + 3n + 1}{3n^2 + 5n}$	6) $u_n = \frac{5+n+n^2}{n}$
$7) u_n = -n^2 + \sqrt{n}$	8) $u_n = \frac{6\sqrt{n} - n}{\sqrt{n} + n}$	9) $u_n = \frac{n^2}{\sqrt{n}}$
$10) u_n = \frac{\sqrt{n}}{n^3}$	$11) \ u_n = \frac{1}{\sqrt{n}}(-3n+5)$	12) $\frac{5n^3 - 3n^2 + 3\sqrt{n}}{n}$

Exercice 14

Dans chaque cas, déterminer la limite de la suite (u_n) définie pour tout entier naturel n non nul.

1) $u_n = n - \sin n$	2) $u_n = -n^2 + \cos n$	3) $u_n = 5n^3 + (-1)^n$
4) $u_n = \frac{n}{2 + \cos n}$		

Exercice 15

Dans chaque cas, déterminer la limite de la suite (u_n) définie pour tout entier naturel n non nul.

1) $u_n = \frac{4n + (-1)^n}{n+2}$	$2) u_n = \frac{n - \sin n}{n^2 + 1}$	3) $u_n = \frac{-n + (-1)^n}{2n - (-1)^n}$
4) $u_n = \frac{n^2 + (-1)^n \sqrt{n}}{n}$	$5) u_n = \frac{(-1)^n}{n+2}$	$6) u_n = \frac{n^2 + \sin n}{n + 5}$

Exercice 16

Soit la suite (u_n) définie par $u_0=-2$ et pour tout entier naturel n par $u_{n+1}=\frac{1}{2}u_n+1$.

- 1) Démontrer, par récurrence, que $u_n < u_{n+1} < 2$.
- 2) (u_n) est-elle convergente?

Exercice 17

Dans chaque cas, déterminer la limite de la suite (u_n) définie pour tout entier naturel n.

bans chaque eas, determiner la limite de la salte (u_n) definie pour tout entier naturer n .			
1) $u_n = \frac{4}{7^n}$	$2) u_n = \frac{2 \times 12^n}{6 \times 4^n}$	3) $u_n = \frac{(-1)^n \times 3^n}{(-0,1)^n}$	
4) $u_n = \frac{(-4)^{n+1}}{5^n}$	5) $u_n = 4^n - 7^n$	$6) u_n = -2 \times 12^n + 3^n - 5$	
7) $u_n = 9^n - 3^n$	8) $u_n = 1 + 0.5 + \dots + 0.5^n$	9) $u_n = 4^n + (-2)^n + 4$	
10) $u_n = \sum_{k=0}^n 2^k$	$11) \ u_n = \frac{2^n - 3^n}{5^n + 4^n}$	12) $\frac{(-3)^n + 5^n}{2^n + 3(-1)^n}$	